

that Drive Human Population Growth

- Demography- the study of human populations and population trends.
- Changes in Population Size - input vs. output, input is greater than output...system expands
- Fertility - role of births play on population
- Life Expectancy - outputs due to human life span
- Age Structure - future size of the population due to age groups shifting in child bearing years
- Migration-regardless of births vs. deaths, population growth, decrease, stability based on entering or leaving the country

Population Density

Population Density is number of individuals living in a given area

Population density = \# of Individuals size of Area (ha, km^2)

Ex. Calculate the population density for 2,500 individuals living on 10,000 hectares of land?

Population density = \# of Individuals size of Area (ha, km^2)

Givens:

Individual = 2500 ppl
Area $=10,000$ ha

Pop density = $\underline{2500 \mathrm{ppl}}=\mathbf{0} .25$ individual per hectare 10,000ha

Reasoning:

For every 4 hectares, you have 1 individual or
For every 1 hectare, you have $1 / 4$ individual.

Changes in Population Size

- Crude birth rate $(C B R)=$ the number of births per 1,000 individuals per year. (\#births/1000ppl/year)
- Crude death rate $(C D R)=$ the number of deaths per 1,000 individuals per year. (\#deaths/1000ppl/year)
- We use 10 to represent the value as a percentage (because the rate is per 1000 ppl, we have to divide by 10 to get it out of $100 . . \%$)

1. Global population growth rate $=\underline{(C B R}-C D R)$ 10

Ex. What was the global growth rate in 2014, when there were 20 births and 8 deaths per 1,000ppl worldwide?

Global population growth rate $=(\mathrm{CBR}-\mathrm{CDR})$

Givens:

Birth $=20 / 1000 \mathrm{ppl}$
Death $=8 / 1000 \mathrm{ppl}$
Global Growth rate =???

Global G.R $=\frac{(20-8)}{10}=\frac{12}{10}=1.2 \%$

Reasonings:
In 2014, the Global G.R was 1.2%
(positive \# = increase in pop., negative \# = decrease in pop.)

Changes in Population Size

- Immigration (In)- the movement of people into a country
- Emigration (Exit)- the movement of people out of a country.
- Net migration rate- the difference between immigration and emigration in a give year per 1,000 people in the country.
Net Migration Rate (\#people/year)= number of immigrants \#people in the population

Changes in Population Size

. Immigration...add to CBR
Emigration...add to CDR
2. National population G. rate $=$

$$
\frac{(C B R+\text { immigration })-(C D R+\text { emigration })}{10}
$$

Ex. What is the growth rate of a population with $100,000 \mathrm{ppl}$ that has 2,000 births, 500 death, 200 emigrants, and 100 immigrants per year?

National population G. rate = (CBR+ immigration) - (CDR+ emigration) 10

Givens:

> Birth $=2000 \mathrm{ppl} / 100=20$ Crude births
> Death $=500 \mathrm{ppl} / 100=5$ Crude deaths
> Immigrants $=100 \mathrm{ppl} / 100=1 \mathrm{Imm}$.
> Emigrants $=200 \mathrm{ppl} / 100=2$ Emg.
> Total population $=100,000 \mathrm{ppl} / 100$ (divide by whatever \# to make total pop. 1000ppl)

Growth rate =???
National population G. rate $=\frac{(20+1)-(5+2)}{10}=\frac{21-7}{10}$
$G . R=\underline{14}=1.4 \%$ (input \{births + imm.\} vs. output \{deaths + emi. $\}$ 10

- Doubling time- is the number of years (time) its takes a population to double
- Growth rate is usually in a \%, for doubling time....ignore that percentage (use \# from \% but not the actual \% sign)

Rule of 70 (doubling time)

3. Doubling time (in years) $=\underline{70}$
growth rate

Ex. What is the doubling time of a population that grows 2\% per year??

Doubling time (in years) $=\underline{70}$

growth rate

Givens:

Growth Rate $=2 \%=2$ (make it a whole number, no calculations)
Doubling Time = ???
Doubling time (in years) $=\underline{70}=35$ years
2

Reasoning:
Whatever the starting population is....it will double in 35 years (it will keep doubling every 35 years, until the growth rate changes)

Try it.....

What was the growth rate of a nation of $1,000,000$ people that has 15,000 births, 4,000 deaths, 1,000 emigrants and 3,000 immigrants per year? When will this population double?

Givens:

- Birth $=15,000 \mathrm{ppl} / 1000=$
- Death $=4000 \mathrm{ppl} / 1000=$
- Immigrants $=3,000 \mathrm{ppl} / 1000=$
- Emigrants $=1,000 \mathrm{ppl} / 1000=$
- Total population $=1,000,000 \mathrm{ppl} / 1000=$

National population G. rate $=$
(CBR+ immigration) - (CDR+ emigration)
10

1. National population G. rate $=$

$$
\frac{(15+3)-(4+1)}{10} \quad=\frac{13}{10}=1.3 \%
$$

2. Doubling time (in years) $=\underline{70}$ growth rate

Doubling time (in years) $=\underline{70}=53.8$ years 1.3

Reasonings:
In ~ 54 years, this nation will go from 1 million to 2 million...in another
~ 54 years, the population will go from 2 million to 4, if the $D . R$ remains the same!!!

Fertility

- Total Fertility Rate (TFR)- an estimate of the average number of children that each woman in a population will bear.
- In the U.S, TFR is 1.84 , each woman of childbearing age would have just under 2 children. (World TFR = 2.42)
- Replacement level fertility- the total fertility rate required to offset the average number of deaths in a population and for the current population size to remain stable. (2 children will replace the 2 parents)

[^0]nce

Fertility

Developed countries- countries with relatively high levels of industrialization and income.

Developing countries- countries with relatively low levels of industrialization and income of less that \$3 per person per day.

- A country with a TFR of less than 2.1 and no net increase in immigration is most likely to experience a population decrease... Below replacement rate.

A country with a TFR more than 2.1 and no net decrease in emigrant, is likely to experience a population growth...above replacement rate.

Life Expectancy

- Life expectancy- the average number of years that an infant born in a particular year in a particular country can be expected to live.

LIFE EXPECTANCY AT BIRTH IN THE U.S.

The U.S. has the lowest life expectancy at birth for both women and men

Life expectancy at birth by sex, in years, 2019

U.S. Will Trail Other Rich Nations In Life Expectancy By 2030

Average life expectancy at birth in selected rich nations by 2030 (in years)

Source: Imperial College London/World Health Organization

Life expectancy at birth, race: United States

Life expectancy vs. health expenditure

Our World in Data
From 1970 to 2018

Data source: OECD - Note: Health spending measures the consumption of health care goods and services, including personal health care (curative care, rehabilitative care, long-term care, ancillary services, and medical goods) and collective services (prevention and public health services as well as health administration), but excluding spending on investments.
Shown is total health expenditure (financed by public and private sources)
Licensed under CC-BY by the author Max Roser. OurWorldinData.org - Research and data to make progress against the world's largest problems.

- Infant mortality rate- the number of deaths of children under 1 year of age per 1,000 live births.
- Child mortality rate- the number of deaths of children under age 5 per 1,000 live births.

Infant Mortality Rates by State
US average - 5.5 per 1000 births

Highest: (U.S)
Death Rates ${ }^{1}$
$2.77-<4.09$
$5.42-<6.74$

- 8.07-9.39

Ranking of the 20 countries * with the lowest infant mortality rate in 2023 (child deaths
in the first year of life per 1,000 live births)

Additional Information:
Worldwide; CIA

Ranking of the 20 countries* with the highest infant mortality rate in 2023 (child deaths in the first year of life per thousand live births)

Source
© Statista 2023

Source
© Statista 2023

Additional Information:
Worldwide; CIA

Age Structure

 Age-Sex structure diagrams (population pyramids)- visual representations of age structure within a country for living males and female s at a given date.The wide base compared to the levels above indicates that the population will grow b/c most females have not hit child bearing years yet.

(c) Germany

Figure 7.8

Environmental Science
© 2012 W. H. Freeman and Company

(b) United States

Stable growth

The Demographic Transition

- The theory of the demographic transition is the theory that as a country moves from a subsistence (survival) economy to industrialization (advancements) and increased affluence (consumption), it undergoes a predictable shift in population growth.

Model the way the birth, death, \& growth rates for a nation change with economic development (4 phases).

The Stages of the

- Phase 1: (Pre-industrial period) Slow population growth because there are high birth rates and high death rates which offset each other. (birth = death rates)
- Phase 2: (begins to industrialize) Rapid population growth because birth rates remain high but death rates decline due to better sanitation, clean drinking water, increased access to food and goods, and access to health care.(death rates drop, birth rates do not change)
- Phase 3: (industrialized) Stable population growth as the economy and educational system improves and people have fewer children. (death \& birth rate level out, due to birth rates declining - less people having children)
- Phase 4: (industrialized) Declining population growth because the relatively high level of affluence and economic develop encourage women to delay having children (birth rates drop below death rates)
- Family planning- the regulation of the number or spacing of offspring through the use of birth control.

Determination of number of children a family has depends on

1.Education of the female (mother)
2.Age of the first born (women are delaying having children)
3.Cultural \& Available resources(money, contraceptives)

Fertility rate: children per woman by world region, including the UN

Source: United Nations - Population Division (2022)
OurWorldlnData.org/future-population-growth/ $\cdot \mathrm{CC}$ BY Note: The total fertility rate is the number of children that would be born to a woman if she were to live to the end of her child-bearing years and give birth to children at the current age-specific fertility rates.

The 12 Most Populous Countries in the

 World
TOP 10 MOST POPULOUS COUNTRIES IN 2023

The relationship between economic development and population growth rate for developing nations. To be considered a developed nation, country's income distribution, ecological protection, social security systems and per-capita income needs to be above the world's average (a country generally has a per capita income around or above \$18,000 (world's average) and has to meet certain socioeconomic criteria.

As of 2022, China's (richest developing country 2021) per capita income was $\$ 12,535$, India's was $\$ 2,357$ \& U.S was $\$ 75,243$, Quatar was $\$ 88,046$

The Impact of Affluence

- Gross domestic product (GDP)- the value of all products and services produced in a year in that country.
GDP is made up of 4 types of economic activity:

1. consumer spending
2. investments
3. government spending
4. exports minus imports.

- A countries GDP often correlates with its pollution levels. (GDP increases as a nation begins to be able to afford to burn fossil fuels).

Ecological Footprints

- Affluence -effect on our Earth by having a lot of wealth such as money, goods, or property (consumer).

A person living in the U.S (one-forth the

However, due to China's rapid development, it is predicted that China will exceed the U.S's footprint within 10 yrs Singapore is 5.87 , highest is Quatar (Middle East) with 14.72

The IPAT Equation

- To estimate the impact of human lifestyles on Earth we can use the IPAT equation:

Impact= Population X Affluence X Technology

Impact - overall environmental effect of a human population

Population- straightforward effect on impact
Affluence - created by economic opportunity, consumers.
Technology - can either degrade the environment or create solutions to minimize our impact on the environment. (destructive vs. beneficial technology)

Figure 7.18
Environmental Science
© 2012 W. H. Freeman and Company

More than one half of the world population will live in urban setting (urbanization cities/infrastructure/suburbs) by 2030

[^0]: Figure 7.4

